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Abstract
Background: The expanded CAG repeat in the Huntington's disease (HD) gene may display
tissue-specific variability (e.g. triplet mosaicism) in repeat length, the longest mutations involving
mitotic (germ and glial cells) and postmitotic (neurons) cells. What contributes to the triplet
mutability underlying the development of HD nevertheless remains unknown. We investigated
whether, besides the increased DNA instability documented in postmitotic neurons, possible
environmental and genetic mechanisms, related to cell replication, may concur to determine CAG
repeat mutability. To test this hypothesis we used, as a model, cultured HD patients' lymphoblasts
with various CAG repeat lengths.

Results: Although most lymphoblastoid cell lines (88%) showed little or no repeat instability even
after six or more months culture, in lymphoblasts with large expansion repeats beyond 60 CAG
repeats the mutation size and triplet mosaicism always increased during replication, implying that
the repeat mutability for highly expanded mutations may quantitatively depend on the triplet
expansion size. None of the investigated genetic factors, potentially acting in cis to the mutation,
significantly influence the repeat changes. Finally, in our experiments certain drugs controlled triplet
expansion in two prone-to-expand HD cell lines carrying large CAG mutations.

Conclusion: Our data support quantitative evidence that the inherited CAG length of expanded
alleles has a major influence on somatic repeat variation. The longest triplet expansions show wide
somatic variations and may offer a mechanistic model to study triplet drug-controlled instability and
genetic factors influencing it.

Background
The Huntington's disease (HD) mutation influences age
at onset through its CAG repeat length, a genetic feature
that is unstable during intergenerational parent-child
transmission [1]. Transmitting males generally cause the
highest expansions in successive generations. Expansion

size progressively increases through a so-called multi-step
mechanism [2,3], thus providing the molecular explana-
tion for onset anticipation. Large CAG expansions above
60 repeats cause a severe phenotype leading to juvenile
HD (JHD) [4]. The higher the expanded repeat length, the
more instable is the triplet stretch in somatic and germline
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tissues [5-10]. In the brain of patients with another CAG
expansion mutation disease, dentato-rubral pallido-luy-
sian atrophy (DRPLA), dividing glial cells carry the largest
CAG mutations [11,12], whereas, in HD, differentiating
nonreplicating neurons carry the largest expansion muta-
tions [13,14]. In other non-CAG triplet diseases with an
excess of repeat expansions involving thousands of trinu-
cleotides, somatic time-dependent variation in a CTG or
GAA polymorphic stretch in the mutated alleles has also
been documented in lymphoblasts, indicating lymphob-
lastoid cells as a valuable source for longitudinal analyses
of triplet instability, mosaicism variability and genetic
transmission [15,16].

Our purpose in this study was to investigate whether,
besides the mechanisms influencing the CAG repeat
mutability in HD terminally differentiated and nondivid-
ing neurons [13,14], cell division may contribute to DNA
instability. To do so, we sought possible length- and time-
dependent variability in the HD gene in serially passaged
lymphoblastoid cell lines established from patients, after
their passages in culture over time. We also studied the
possible dependence of the somatic triplet variation and
mosaicism (heterogeneity of the repeat length in the tis-
sue) on CAG mutation length, on factors acting in cis or in
trans to the mutation, and on drug-induced contraction of
the mutation size.

Methods
Passaged cell lines and DNA study
Peripheral blood samples were collected after written
informed consent. The subjects' consent was obtained
according to the Declaration of Helsinki (Br Med J 1991;
302; 1194) after approval of the Bioethical Committee of
Neuromed Institute. We obtained three blood samples
from each subject; lymphocytes were isolated by differen-
tial centrifugation through Ficoll (Cederlane Laborato-
ries) and transformed by Epstein Barr virus separately and
in parallel from each sample as described [17] and accord-
ing to the standard protocol [18]. A total 58 HD lymphob-
lastoid cell lines from subjects with a wide range of CAG
expanded repeats, including low (39–41 CAG) and highly
penetrant (60 CAG and more) mutations conventionally
considered causing juvenile HD (Table 1), were serially
passaged for at least 6 months (range: 6–12 months) to
analyse longitudinal repeat variation during the passage
time as previously described [17]. Groups of about 10 cell
lines were cultured in parallel. All groups shared one iden-
tical clone obtained from one cell line as a marker of CAG
size variability. This strategy was used to exclude potential
length variability in the same cell cultures, and to high-
light a potential influence on mutation size and mosai-
cism of yet unknown environmental factors during
culture (for details see Additional file 1).

Table 1: Demographic characteristics of the patients and genetic characteristics of the lymphoblastoid cell lines in the patients with 
Huntington's disease.

Cell lines No. Gender
Male/Female

Mean
expanded CAG 

± SD
(range)

Mean
Age at onset ± SD

(range)

Over-time
Triplet 

variation
(ΔCAG)

Mean
Mosaicism degree 

± SD
(No. peaks)

Expansions/
contractions

(triplet changes in %)

Lymphoblats with 
low mutation 
penetrance

(36–41 CAG)

6 3/3 40.167 ± 0.983
(39–41)

57.250 ± 5.62
(50–63)

0.167 ± O.408
(0–1)

6.333 ± 1.966a

(5–10)
1/0

(1/6 or 17%)

Lymphoblats with 
usually expanded 

mutation penetrance
(42–59 CAG)

43 22/21 45.628 ± 3.471
(42–54)

40.643 ± 10.094
(21–57)

0.628 ± 0.874
(0–3)

7.442 ± 2.797b

(3–14)
6/11

(17/43 or 39%)

Lymphoblasts with 
high mutation 
penetrance

(60–120 CAG)

9 6/3 80 ± 21.042
(64–120)

12.750 ± 8.396
(3–25)

3.429 ± 1.512
(2 ≥ 5)

15.429 ± 11.238c

(7–40)
6/3

(9/9 or 100%)d

Total 58 31/27 50.397 ± 15.416
(39–120)

37.741 ± 14.819
(3–63)

0.929 ± 1.333
(0–5)

8.321 ± 5.250
(3–40)

13/14
(27/58 or 46%)

Greater CAG repeat expansions are associated with a larger number of CAG repeat changes (i.e. expansion/contraction events) in passaged 
lymphoblasts. DNA from passaged lymphoblasts with highest expansions of 60 CAG repeats or more causing juvenile Huntington's disease shows a 
greater maximum number of peaks (p > 0.001; c vs a and b) indicating the largest triplet mosaicism and a larger number of expansion events (d) than 
other cell lines.
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For allele length analyses, genomic DNA was purified
from blood lymphocytes, and lymphoblastoid cell lines
containing about 1–3 × 106 cells, using standard proce-
dures (see Additional file 1 and [17]). To elucidate poten-
tial factors acting either in cis or in trans with HD
mutations, we also analysed CCG repeat size, deletion of
the glutamic acid residue (ΔG) at nucleotide position
2642 of the HD gene, and the CAAΔCAG mutation in the
12 base pair region between CAG and CCG repeats, on
both normal and mutated genes using previously
described techniques [17]. All data concerning subjects'
demographic features, cell-line mutation length and
repeat number variation are included in Table 1.

Analysis of somatic CAG repeat changes and mosaicism 
degree in passaged lymphoblasts
The GeneScan traces of the PCR amplification products
from patients' passaged lymphoblastoid cell lines (see
foregoing Methods) [17], appeared as a normal distribu-
tion composed of peaks differing in size by 3 bp and cor-
responding to a single CAG triplet change [8,19,20]. The
size of the CAG repeat indicated by the highest peak cor-
responded to the most intense band obtained by hot PCR
and was recorded as the size of the repeat in a given
patient (see Additional file 2, Figure 1A). To determine the
reproducibility of the CAG repeat size and its variation
over time, we compared data yielded by hot and cold PCR
techniques and sized samples on more than one gel.
Somatic CAG repeat variation was defined by calculating
the number of repeats either increased (e.g. expanded) or
decreased (e.g. contracted) from the modal CAG repeat
number of the expansion mutation in a given subject (see
Additional file 2). Because some cell lines expanded or
contracted during passages, the magnitude of the somatic
CAG repeat variation in a given cell line was defined as the
sum of both phenomena (expansions and contractions)
occurring during the 6-month culture (see Additional file
3, Table 1). The repeat changes obtained in each cell line
ranged between 0 in magnitude (no evidence of repeat
changes over time, defined as ΔCAG = 0) and > 1 (ΔCAG
>1), according to the number of expanded or contracted
repeats or both, during 6-month culture, (see Additional
files 1, 2, 3 and Table 1). The level of triplet mosaicism
was expressed by the largest number of peaks calculated
during the 6-month culture [8,19,20] (see Additional file
2). PCR products of normal alleles showed a single band/
peak, always unchanged over-time, whereas expanded
alleles consisted of multiple ladder bands/peaks, indicat-
ing somatic mosaicism. The size and range of expanded
alleles varied among patients [8,19] and, sometimes,
among the different cultured cell passages (see Additional
file 2). To avoid artefacts potentially causing false bands
or peaks due to the PCR procedure, we re-assessed the
CAG size and its variation after serial dilution of DNA
samples obtained from each cell line.

Cell-line drug treatment
In an attempt to reduce the mutation size and stability, we
tested drugs influencing some of the suggested mecha-
nisms potentially related to triplet instability [21]. For
drug treatment experiments, two "stable" and two partic-
ularly "unstable" and prone-to-expand cell lines (of 74
and 85 CAG repeats) were selected. We treated cell lines
with the following drugs: ethylmethanesulphonate
(EMS), a GC/AT modifier thought to prevent CAG expan-
sion in lymphoblasts derived from patients with myot-
onic dystrophy type 1 [22]; ethidium bromide (EB), a
DNA intercalating drug reducing the rate of repeat expan-
sion by inhibiting enzymes that bind to DNA [23]; and
mitomycin C (Mit-C), an interstrand crosslinker [22].
Each progenitor culture was split into multiple aliquots:
four flasks for drug treatment (one each for EMS, EB and
Mit-C) and one flask for control. Each treatment was per-
formed in duplicate. All cultures were serially passaged as
previously described and maintained in parallel through-
out the experiments (for further cell line culture and drug
treatment methodology see Additional file 1).

Statistical analysis
For statistical analysis we used nonparametric tests:
Mann-Whitney U test, to compare differences between
cell lines with different ΔCAG (small triplet changes with
ΔCAG ≤ 3 vs large triplet changes ≥ 5), and Kruskal-Wallis
test to compare differences across more than two groups.
A simple regression model was used to test the linear
dependence of the maximum number of peaks (CAG
mutation mosaicism) on expanded CAG repeats. Data are
presented as means ± SE. Statistical analysis was per-
formed with Stat View V (tests considered significant at p
≤ 0.05).

Results
Expanded CAG repeat size-dependent changes
Triplet variation varied over culture time in a CAG length-
dependent manner (Table 1). Most passaged cell lines
showed no or minimal (1 to 3 repeats) over-time triplet
variation (51/58 cell lines or 88%; Table 1), including
small contraction or expansion events. The repeat changes
obtained in each cell line ranged between 0 in magnitude
(ΔCAG = 0, n = 31) and > 1 [ΔCAG > 1, n = 27; Group 1
(n = 11), 2 (n = 8), 3 (n = 3), or ≥ 5 (n = 5)], according to
the number of expanded or contracted repeats or both,
during 6-month culture (see Additional files 1, 2, 3 and
Table 1). Cultured cell lines showing over-time triplet var-
iation (and ΔCAG greater than 5) had, on average, a larger
CAG repeat number than cell lines with no or little
somatic variation (p < 0.0001, Figure 1A). The magnitude
of ΔCAG significantly correlated with the size of the
expanded CAG repeat: the more expanded the repeat
number was, the higher were the ΔCAG values (p values
ranged from 0.0041 to < 0.0001, Figure 1B). All cell lines,
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regardless of their ΔCAG values, exhibited some degree of
triplet mosaicism (i.e., repeats varied in size). The degree
of mosaicism invariably increased significantly in cell
lines carrying large expansions and ΔCAG ≥ 5 (p < 0.0001,
Figure 1C). The maximum number of peaks (e.g. the level
of triplet mosaicism indicating a mutation rate degree in a
certain tissue) significantly correlated with ΔCAG magni-
tude (Figure 1D).

No significant association of investigated in cis and in
trans factors influenced the repeat variation in our cohort
of cell lines (see Additional file 1). Nor did we ever
observe the CAAΔCAG mutation in the 12 base-pair
region between CAG and CCG repeats, on either normal
or mutated genes, regardless of ΔCAG values.

Instable cell lines with (ΔCAG ≥ 5) and stable cell lines with no or small (ΔCAG ≤ 3) CAG repeat variation in dependence on expanded CAG repeat number and mosaicismFigure 1
Instable cell lines with (ΔCAG ≥ 5) and stable cell lines with no or small (ΔCAG ≤ 3) CAG repeat variation in 
dependence on expanded CAG repeat number and mosaicism. A, Expansion CAG mutations are significantly larger in 
instable cell lines with ΔCAG ≥ 5 (n = 55; 89.4 ± 11.1 CAG) than in those with ΔCAG ≤ 3 (n = 55; 46.6 ± 0.10 CAG). B, Rela-
tionship between ΔCAG magnitude and expanded CAG repeat number. Groups 0, 1, 2, 3 and 5 represent cell lines with a 
ΔCAG value of 0, 1, 2, 3, and ≥ 5 repeats, respectively. The higher ΔCAG magnitude, the more significant is the statistical dif-
ference with Group 0-cell lines. Groups 2, 3 and 5 all showed a significant difference vs Group 0 (p-values = 0.0009, 0.0041 and 
< 0.0001, respectively). C, The mosaicism level, calculated by counting the maximum number of peaks, is significantly lower for 
stable cell lines with no or small repeat variation (n = 55, 7.4 ± 2.8 peaks and ΔCAG ≤ 3), than for those with large CAG 
changes (n = 5, 29.9 ± 13.7 and ΔCAG ≥ 5). D, The mosaicism level in dependence on ΔCAG: Samples with more than 80 
CAG and about 40 peaks excluded as outliers to avoid a possible bias. Cell lines with large ΔCAG variations ≥ 5 CAG repeats 
showed an increased number of peaks and mosaicism vs each of the other groups with lower CAG variation (p-values = 
0.0003, 0.0007, 0.0086 vs cell lines with ΔCAG = 0, 1 and 2 repeats, respectively). Diamonds in panels B, C and D represent 
outliers. Standard deviation is reported at the top of each bar.
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Drug-induced CAG contraction
In experiments designed to explore whether drug treat-
ment suppressed somatic repeat expansion [21,24], using
lymphoblastoid cell lines derived from HD patients as a
model, we treated two expansion-prone cell lines with EB,
EMS and Mit-C, chemicals or drugs thought capable of
reducing triplet expansion [22,25] (Figure 2). All the
chemicals we used, EB, EMS, and Mit-C, considerably
reduced CAG repeat numbers, especially in cells treated
for 6 months. The drug-induced contraction apparently
eliminated the bi-modal intra-allele CAG distribution in
both cell lines, suggesting that triplet expansion is pre-
ventable. The same drugs failed to influence the size of the
unexpanded alleles in both cell lines (see Additional files
4 and 5).

Discussion
The relatively small magnitude of triplet changes and
length gains we observed in most cell lines (88% of total)
confirms that cell-division related events contribute min-
imally to HD instability and is in agreement with the
recent findings concerning CAG repeat changes mainly
occurring in terminally differentiating nondividing neu-
rons [13,14,26]. The only exception in our model were
the very large expansion mutations showing increased
over-time gains of CAG variations in dividing cells (see
Additional file 2, Figures 1 and 2, Table 1). Lymphoblasts
with highly expanded mutations are particularly prone to
oxidative stress [27,28] and decreased mitochondrial ATP
production [29]. More recent research has proposed a
model taking into account a relationship between oxida-
tive lesions accumulating in brain and progressive
somatic gains in expanded repeats resulting from errors in
repairing [26]. Hence besides mechanisms determining
DNA instability as reported in differentiating neurones
[13,14,26], CAG mutability might have arisen also from
an age related oxidative-stress in highly expanded lym-
phoblasts ample evidence shows that JHD patients show
extended brain damage associated with a particularly
severe phenotype [4] and large mutations cause JHD, we
conjecture that the cell division occurring in glial cells
with large mutations may contribute to an excess of
expanded repeat gains, thus contributing to more wide-
spread brain disease, as happens in DRPLA [11,12]. This
observation is in line with the hypothesis that in certain
cases of HD, mutation length gains may continue to accu-
mulate during life, as the disease progresses [30].

Consistent with a previous report [17], we found no influ-
ence on instability of the analysed factors potentially act-
ing in-cis to the mutation (see Additional file 1), including
the CAAΔCAG mutation in the 12 bp region between the
CAG and CCG repeats, described by Goldberg et al. [7].
This apparent discrepancy may depend on the fact that
Goldberg et al. studied a population of variable ethnic ori-

gin whereas ours was an ethnically homogeneous popula-
tion [17]. Because all our cell lines showed the CAA codon
on both alleles in the 12 bp region between the CAG and
CCG repeats, regardless of the CAG repeat variation, we
therefore rule out even the potential effect of such a factor
potentially acting in trans with the CAG repeat instability
in our population. The role of the normal allele size to test
the hypothesis of whether the CAG repeat polymorphism
in the non-HD range is a potential physiological modifier
of mutation instability [29,31-33] remains to be investi-
gated.

To reduce in vitro the mutation length of particularly large
and unstable expansions and to approach a potential ther-
apeutic strategy, we treated two cell lines with drugs
thought capable of influencing mechanisms of instability
[21,22,25]. When we used drugs interfering with diverse
mechanisms to treat two cell lines carrying large muta-
tions and particularly prone-to-expand, the expanded
(but not the normal allele) repeat number contracted, and
the bi-modal intra-allele CAG distribution progressively
disappeared (Figure 2). Hence, we presume that many dif-
ferent mechanisms act in concert to influence CAG repeat
instability. Given that somatic repeat expansion affects the
HD phenotype, this finding provides useful information
insofar as contracting the longest repeat number is among
the putative pharmacological strategies for use in patients
with HD, particularly when high expansion mutations
cause early age at onset [22,25]. Intriguing questions left
open for future research include the mechanisms underly-
ing triplet repeat expansion (e. g. replication, recombina-
tion and repair processes), and their drug-induced
contraction.

The main limitation of our model is probably cell prolif-
eration induced by an infecting virus. Indeed, as recently
demonstrated in HD patients, mutation length gains of
CAG repeats may even occur in somatic cells or neurons
well after these cells are terminally differentiated and
mitotic replication has ceased. The fact that our proliferat-
ing cell model mostly disclosed small contraction/expan-
sion changes in few triplets nevertheless theoretically
offers further strength and support to evidence that repeat
length gains may occur independently of replication, as
demonstrated in the striatal neuronal population
[13,14,26]. An additional limitation of our work may
depend on the limited (two) repetitions of the experi-
ments. This was due to the relatively large number of cell
lines cultured for long times (at least six months) with a
relevant number of PCR assays required and performed
each week (see Methods and Additional file 1). Therefore,
the inter-experimental reproducibility is unknown as sta-
tistical significance could not be determined from the lim-
ited (two) repetitions of the experiments. Despite the
potential limitations of this and other studies [15,16,27-
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Figure 2 (see legend on next page)
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29,34], i.e. the biological influence of the infecting virus
on immortalised cells and the inter-experimental repro-
ducibility, our study may offer an in vitro approach to
human cells in the attempt to provide a new experimental
model system for mechanistic studies of triplet expansion
(mitotic vs repair synthesis or other mechanisms so far
reported) and clinical treatments for HD.

Conclusion
Our study offers further relevance to the hypothesis that
the repeat mutability depends quantitatively on CAG tri-
plet expansion size. The longest triplet expansions show
wide somatic variations and may offer a mechanistic
model to study triplet drug-controlled instability. Replica-
tion does not affect somatic variability in most of the cell
lines whose CAG expansion size ranges in the usual muta-
tion penetrance confirming that cell-division related
events contribute minimally to HD instability, in agree-
ment with the findings concerning CAG repeat changes
mainly occurring in terminally differentiating nondivid-
ing neurons. Instead, large repeat expansions causing JHD
tend to expand during replication supporting the hypoth-
esis that mechanisms affecting CAG mosaicism and muta-
bility may differ in dependence on the mutation length, in
certain tissues, and as the disease progresses. In our exper-
iments certain drugs controlled triplet expansion in
prone-to-expand HD cell lines carrying large CAG muta-
tions. Finally, we found no influence on instability of the
analysed factors potentially acting either in cis or in trans
with the mutation, including the CAAΔCAG mutation in
the 12 bp region between the CAG and CCG repeats.
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